
Distributed and Self-adaptive Cluster-head Selection 

Algorithm for Hierarchical Wireless Sensor Networks 

Sai Ji 
1,2,*

, Liping Huang 
1
, Chang Tan 

1
, Jin Wang 

1
  

 
1 Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information 

Science and Technology, 219# Ningliu Road, Nanjing, China, 210044 
2 The Aeronautic Key Laboratory for Smart Materials and Structures, Nanjing University of 

Aeronautics and Astronautics, 29# Yu Dao Street, Nanjing, China, 210016 

jisai@nuist.edu.cn, {hlpwhy, passerby.tan}@gmail.com, wangjin@oslab.khu.ac.kr 

Abstract. In the hierarchical wireless sensor network (WSN), selecting cluster 
head (CH) is important issue to increase the network energy efficiency, 

scalability and lifetime. For the sake of balancing energy expenditure of sensor 

nodes and improving the performance of routing, We propose a distributed and 

self-adaptive cluster-head selection algorithm. Based on the hierarchical 

agglomerative clustering (HAC) method, the algorithm uses the qualitative 

connectivity data as input data, and tailor simple numerical methods to generate 
a cluster tree. From such clustering sequence, the CH and the backup CH can be 

quickly selected without extra message exchanges. Simulation results 

demonstrate that this method is effective and self-adaptive, which can enhance 

network self-control capability and resource efficiency, and prolong the whole 

network lifetime. 

Keywords: Wireless sensor networks; cluster head selection; hierarchical 
agglomerative clustering; backup cluster head 

1   Introduction 

In the last few years there has been a growing interest in small, low-power hardware 

platforms that integrate sensing, processing data and wireless communication 

capabilities. These devices are called sensor nodes and are grouped to form a Wireless 

Sensor Network (WSN). A WSN has application in environmental monitoring, 

infrastructure management, transportation and many others [1, 2]. The hierarchical 

network architecture of WSN shows its advantages on sharing limited wireless 

channel bandwidth, balancing node energy consumption, enhancing management, and 

so on[3]. The hierarchical routing protocols can be classified into two categories: 

random-selected-CH protocol and well-selected-CH protocol. The representative 

random-selected-CH protocols are: LEACH [4] and HEED[5]. LEACH-C [6] and 

AHP [7] are well-known well-selected-CH protocols. 

 The random-selected-CH protocols have two main disadvantages. Firstly, the 

randomly picked CH may have a higher communication overhead. Secondly, the 

periodic CH rotation or election which needs extra energy to rebuild clusters. To avoid 

192



the problem of random CH selection, the approach of well-selected-CH has considered 

three factors: energy, mobility, and the better cluster quality. However, they usually 

have a more complex scheme and higher overhead to optimize the CH selection and 

cluster formation.  
In this paper, we propose a distributed HAC (DHAC) routing algorithm for wireless 

sensor networks. One of the most commonly accepted method, UPGMA, is used to 
make clustering decision in this paper. The qualitative one-hop connectivity 
information is adopted as input data, which can be easily obtained through message 
transmission with low or no extra communication cost. Simulations have validated its 
effectiveness. 

2 Distributed hierarchical agglomerative clustering 

2.1   DHAC Inrtroduction and Notations Definitions 

Hierarchical agglomerative clustering (HAC)[8] is a conceptually and mathematically 

simple clustering approach which uses four clustering methods, CLINK, SLINK, 

UPGMA, and WPGMA. Recently, the most research does focus on the clustering 

technique analysis and comparison. All of these methods comprise three common key 

steps: obtain the data set, build the similarity matrix, and execute the clustering 

algorithm. Based on the concept of HAC, we propose a DHAC method for distributed 

environments by improving the HAC algorithms. The main idea behind DHAC is that 

a node only needs one-hop neighbor knowledge to build clusters. To apply the DHAC 

algorithm in WSNs, we present a bottom-up clustering approach by simple six steps. 

Firstly, the qualitative connectivity data is obtained as input data set for DHAC. 

Secondly, the similarity matrix is built. Thirdly, the similar nodes are grouped 

together by executing the distributed clustering algorithm. The last three steps are 

cutting the cluster tree with the threshold, merging the smaller cluster, and electing 

the CHs. The process of all steps is illustrated in the following sections. Figure 2 and 

Figure 3 illustrate the pseudo code of the DHAC implementation for WSNs. Table 1 

summarizes the notations we will use in our discussion. 

Table 1. Summary of notations  

Symbol Definition 

Simi_Matrix Similarity Matrix 

Node_Id Node Id 
Ch_Id Cluster Head(CH) Id 

Min_Coeff The minimum coefficient in the Similarity Matrix 

Min_Coeff_Id 
the cluster(CH_Min) Id  corresponding to 
Min_Coeff  

T The threshold of Min_Coeff 

Csize The number of cluster member in a cluster 

Min_Cluster_

Size 
The threshold of minimum cluster size 

193



1.   procedure obain_local_input_data () 

2.    Send HELLO, Node_Id to 1-hop neighbors; 

3.    if (isHELLOReceived==false) 

4.      Keep listening to neighbors; 
5.   else 

7.     Build local data with (sender’s Node_id, 1) 

8.   endif 

9.  end procedure 

10.  procedure simi_matrix () 
11.  Ch_Id=Node_id; 

12.   send AskLocalData and its local data to 
 direct connected neighbors; 

13.  if (isAskLocalDataReceived==false) 

14.     Keep listening to neighbors; 
15.  else 

16.    Obtain sender’s data; 
17.   Establish Simi_Matrix via Dice coefficient; 

18.  endif 

19. end procedure 

2.2   Input Data Set 

In this paper, DHAC can use simple qualitative connectivity information of a network 
or quantitative data through received signal strength or GPS. The quantitative could be 
the location of each node, the nodes' residual energy, or other features. Either 
qualitative data or quantitative data is the properties of the sensor node, and the nodes 
with similar properties can be crusted together. For simplicity and without loss of 
generality, we use the qualitative connectivity information as the input data set for 
DHAC.  

 

 

 

 

 

Fig. 1. A simple 8-node network.          Fig. 2. Pseudo code of distributed HAC (a). 

2.3   Build the Similarity Matrix 

To set up the local similarity matrix, in figure 2, lines (11-16), each node elects itself as 
a CH(cluster head) and send AskLocalData message to its direct connected neighbors. 
Then node keeps listening until accepted the senders' local qualitative connectivity 
data. After obtained the qualitative input data, the Similarity matrix could be built 
(Figure 2, line 17), and there are three typical methods [9] to calculate the similarity 
coefficient for qualitative data:  Dice (Sorenson's) coefficient, Jaccard coefficient and 
Simple Matching coefficient. The Dice coefficient between node {a} and {b} can be 

formulated as ,

2
1

a b

a b

C
S

N N
= −

+
, Where C is number of positive matches between 

nodes {a} and {b} in input data. aN  is total number of “1” value filled in the node 

{a}’s local table that are directly connected. The calculation principle of 
bN  is 

similar to that used in
aN . 

194



2.4   Executing the Distributed Clustering Algorithm 

After building the similarity matrix. Each node takes itself as the cluster head(CH) 
and obtains its own local resemblance matrix, from which its minimum 

coefficient(Min_Coeff) can be easily found. In table 1, we name the ID of CH as Ch_Id, 

and define the cluster(CH_Min) Id corresponding to Min_Coeff as Min_Coeff_Id. If Ch_Id is 

smaller than Min_Coeff_Id, then CH sends AsktoMerge message to its CH_Min for 
merging themselves together, otherwise CH does nothing and just waiting. In figure 3, 

lines 3-11 show the process of sending message. 

 

 

Fig. 3. Pseudo code of distributed HAC (b). 

In distributed clustering algorithm, another role action of node is receiving 

message(figure 3, lines 12-18). When a cluster head(CH) receives a ASKtoMerge 
message, it compares the sender’s cluster head id with its Min_Coeff_Id. If they are just 

the same, then the CH facebacks a message to the source node to confirm  the 

merging condition and  elects the source to be the new CH. Otherwise, the CH sends 

back a DENY message. When a cluster receives the CONFIRM message from 
another cluster, it goes to merge the two clusters into a new cluter (figure 3, lines 31-

36). At the same time, local similarity matrix and neigbor list  are combined together, 

and the similarity matrices of two clusters are updated through the chosen HAC 

algorithm. CLINK, SLINK, UPGMA, and WPGMA are four main types of the HAC 
algorithm methods. Among them, un-weighted pair-Group Method (UPGMA) is the 

most commonly adopted clustering method. This defines the similarity measure 

between two clusters as the arithmetic average of resemblance coefficients among all 

19.  elseif (isDENYReceived==true ) 

20. CH stops sending AsktoMerge  
message until Simi_Matrix 

refreshed; 
21.  elseif (isCONFIRMReceived==true) 

22.  do merge_clusters(); 

23.  elseif(isREFRESHReceived==true) 
Update the Simi_Matrix; 

24.  endif } 

25.  while(Min_Coeff<T) 

   /*--- Control the minimum cluster size--*/ 

26.  caculate the cluster’s member  
number to Csize; 

27.  if (Csize<Min_Cluster_Size) 
28.   do merge_clusters(); 

29.  endif 

30.  end procedure 

 

31. procedure merge_clusters() 
32.   merge two clusters; 

33.   blend local information of two 

clusters; 
34.   update Simi_Matrix by using UPGMA 

method 
35.   broadcast REFRESH message; 

36. end procedure 

1.  procedure execute_DHAC () 

2.   do  { 
   /*---- Distributed Sending Message----*/ 

3.    if (Ch_Id== Node_Id) 
4.    Find minimum coefficient in  

simi_matrix  to  assign to 

variable Min_Coeff; 
5.   Set Node_id with Min_Coeff  to  

CH_Min; 
6.    if  (Ch_Id< Min_Coeff_Id) 

7.       Send AsktoMerge message to  

CH_Min; 
8.   else 

9. CH keeps waiting; 
10.  endif 

11.  endif 

/*---- Distributed Receiving Message----*/ 
12.  if (isAsktoMergeReceived==true) 

13.  if (Min_Coeff_Id ==sender’s CH_Id) 

14. Faceback CONFIRM message; 
15. CH_ID=sender’s CH_Id; 

16.  else 
17. Faceback DENY message; 

18.  endif 

195



pair entities in the two cluster. After a new cluster is formed, the CH broadcasts a 

REFRESH message to notify its neighbors to update their similarity matrices. 

Clusters update their own similarity matrix after receiving this REFRESH message, 

which contains the new cluster information and the merged neighbor list. Once a CH 
receives a DENY message from its CH_Min, the CH stops sending the AsktoMerge 

Message until its similarity matrix has been uptated. 

Since the qualitative connectivity data are very simple, and  a few of Min_Coeff in 

initial local similarity matrix is usually very small. A do-while loop is used to ensure 
clustering process to be executed at  least once. This process will repeat until the 

while condition (line 25). 

2.5  The Last Three Steps of DHAC 

The last three steps are cutting the cluster tree with the threshold, merging the smaller 
cluster, and electing the CHs. After generating a cluster tree, a pre-configured 
threshold T (figure 3, lines 2-25) is used in do-while loop to controls the upper bound 
size of clusters. The predefined threshold can be transmission radius, number of 
clusters, or cluster density. If the cluster size is less than a pre-defined threshold, 
Min_Cluster_Size, merge the cluster with its closest cluster (figure 3, lines 26-29). To 
select the appropriate CHs in clustering tree or clustering sequence, DHAC simple 
chosse the nodes which satisfy two conditions: (1) the node is one of two nodes which 
are merged into the cluster at the first step. (2) the node with the lower ID. Another 
node which has the higher ID becomes the backup CH.  

3 Simulation and performance evaluation  

In this section, we evaluate the performance of DHAC algorithm implemented in Ns-2 
simulator . For increasing comparability, most parameters are similar to [10]. Each 

node is equipped with an omni-directional antenna. Computer simulation is carried out 

in a sensor network, where 400 sensor nodes are deployed randomly in a rectangular 

region of size 400 400×  units. The sink node is located at the center of netwok. Next, 

we will present the performance comparison among the proposed DHAC and LEACH 

protocols. We use two metrics to analyze and compare our simulation results for 

clustering and energy saving: network lifetime and cluster energy dissipation. Here we 

use node death rate versus the rounds of clustering to represent network lifetime. 
As figure 4 and figure 5 shown, the performance of  DHAC is much better than 

LEACH. In figure 4, The clustering dissipated energy of DHAC is about 4 times less 

than that of LEACH which predicates that DHAC can achieve much high reliability 

and efficiency in energy consumption at 300 rounds timing. In figure 5, LEACH has 
the shortest network: the number of clustering rounds is 300 and only 50% of the 

nodes are alive. Compared to LEACH, DHAC prolongs it by 25%. 

 

 
 

196



 

 

 

 

 

 

 

 

Fig. 4. Clustering dissipated 
energy at 300 rounds timing.              

Fig. 5. Node death rate versus the 
rounds of clustering. 

4   Conclusions  

In this paper, we have proposed a distributed approach, DHAC, to classify sensor 
nodes into appropriate groups in stead of simply gathering nodes to some randomly 
selected CHs. We demonstrated the application and evaluation method, UPGMA, with 
qualitative data. Simulation results demonstrate that this method is effective and self-
adaptive, which can enhance network self-control capability and resource efficiency, 
and prolong the whole network lifetime. In our future work, we will evaluate the 
cluster quality with different HAC methods, SLINK, CLINK, and WPGMA. 

 

Acknowledgements. This work was supported by the Natural Science Foundation of 
the Jiangsu Higher Education Institutions of China(Grant No. 11KJB520011 ) and the 

PAPD. 

References 

1. T. Nagayama, M. Ushita, Y. Fujino, Suspension Bridge Vibration Measurement Using 
Multihop Wireless Sensor Networks. Procedia Engineering, 2011, 14:761-768 

2. He Shibo, Chen Jiming, Sun Youxian. Coverage and Connectivity in Duty-Cycled 
Wireless Sensor Networks for Event Monitoring. IEEE Transactions on Parallel and 
Distributed Systems, 2012, 23(3):475-482 

3. J.N. Al-Karaki, A.E. Kamal, Routing techniques in wireless sensor networks: a survey, 
IEEE Wireless Commun. 11 (6) (2004) 6–28. 

4. W. Heinzelman, A. Chandrakasan,H. Balakrishnan, Energy-efficient communication 
protocol for wireless microsensor networks, in: Proceedings of the 33rd Hawaii 
International Conference on System Sciences (HICSS’00), January 2000. 

5. O. Younis and S. Fahmy "Distributed Clustering in Ad-hoc Sensor Networks: A Hybrid, 
Energy-Efficient Approach", Proc. of IEEE INFOCOM, March 2004 pp. 629-640.   

6. W.B. Heinzelman, A. Chandrakasan, H. Balakrishnan, An application specific protocol 
architecture for wireless microsensor networks, IEEE Transactions on Wireless 
Communications 1 (4) (2002) 660–670. 

100 150 200 250 300 350 400

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

 

 

C
lu

s
te

ri
n

g
 d

is
s
ip

a
te

d
 e

n
e

rg
y
 (

J
)/

n
o

d
e

Clustering dissipated energy at 300 rounds timing

 LEACH

 DHAC

0 100 200 300 400 500 600 700 800 900 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

N
o
d

e
 d

e
a
th

 r
a

te

Number of clustering rounds

 LEACH

 DHAC

197



7. Y. Yin, J. Shi, Y. Li, P. Zhang, Cluster head selection using analytical hierarchy process 
for wireless sensor networks,in:Proceedings of IEEE 17th International Symposium 
PIMRC,Helsinki,Finland,2006,pp.1–5. 

8. M.R. Anderberg, Cluster Analysis for Applications, Academic Press Inc., New York, 
1973. 

9. O. Younis and Sonia Fahmy, “Distributed Clustering in Ad-hoc Sensor Networks: A 
Hybrid, Energy-Efficient Approach”, in Proceeding of ACM MobiCom 2003, San Diego, 
California USA, Sep.14-19, 2003. 

198




