Breaking H^2-MAC using Birthday Paradox

Fanbao Liu1,2, Tao Xie1 and Changxiang Shen2

1 School of Computer, National University of Defense Technology, Changsha, 410073, Hunan, P. R. China
2 School of Computer, Beijing University of Technology, 100124, Beijing, P. R. China

Abstract. We propose an efficient method to break H^2-MAC, by using a generalized birthday attack to recover the equivalent key, under the assumption that the underlying hash function is secure (collision resistance).

Keywords: H^2-MAC, Equivalent Key Recovery, Birthday Paradox.

1 Introduction

In ISC 2009, Yasuda proposed H^2-MAC [5], a variant of HMAC, which aims to remedy the drawback of HMAC and keep its advantages and security at the same time. H^2-MAC is defined by removing the outer key of HMAC, which is shown as folllows,

$$H^2\text{-MAC}(K)(M) = H(H(K||pad||M))$$

where K is an n-bit key, and $pad \in \{0, 1\}^{m-n}$ is a fixed constant.

H^2-MAC is proven to be a secure PRF (pseudorandom function) under the assumption that the underlying compression function is a PRF-AX [5].

In ISA 2011, Wang [3] proposed an equivalent key recovery attack to H^2-MAC instantiated with the broken MD5 [2, 4], with complexity about 2^{97} on-line MAC queries.

We break H^2-MAC by recovering its equivalent key through a generalized birthday attack with two groups. First, we get a lot of MAC values of H^2-MAC using different messages in group G_1, through on-line queries. Second, we directly compute many values of $H(H(C||pad||m))$, called H^2, in group G_2 through off-line, where C’s and m’s can be both randomly generated. If the on-line queries in G_1 is $2^{n/2}$ and the off-line computations in G_2 is also $2^{n/2}$, then, there is a pair (m, m') that the inner hashing part of H^2-MAC and H^2 equate with great probability [1]. Therefore, the equivalent key of H^2-MAC can be recovered by computing the corresponding value of H^2.

1 The secret key of H^2-MAC is replaced with a constant, for example, the IV of the underlying hash function.
2 Notations

Let \(H \) be a concrete hash function mapping \(\{0, 1\}^* \rightarrow \{0, 1\}^n \). Let \(IV \) be the initial chaining variable of \(H \). Let \(K \) denote a secret key with \(n \) bits. \(x||y \) denotes the concatenation of two bit strings \(x \) and \(y \). \(|G| \) denotes the number of elements of the set \(G \). \(\text{pad}(M) \) denotes the padding bits of \(M \) in Merkle-Damgård style. \(H^2 \) means that the secret key to \(H^2\text{-MAC} \) is replaced with a constant \(C \) or a known parameter to everybody, hence, \(H^2 \) can be also viewed as the double application of the underlying hash function \(H \).

3 Breaking \(H^2\text{-MAC} \) Using Birthday Paradox

We call \(I_K = H(K||\text{pad}||M) \) the inner hashing of \(H^2\text{-MAC} \), \(Oh = H(I_K) \) the outer hashing of \(H^2\text{-MAC} \), respectively.

We apply the generalized birthday attack with two groups \([1]\) to \(H^2\text{-MAC} \) and then recover its equivalent key \(K_e = H(K||\text{pad}||M_0) \).

We use 1-block messages \(M_i \)'s to generate the corresponding \(H^2\text{-MAC} \) values, and use 1-block messages \(M'_j \)'s to generate the corresponding \(H^2 \) values, where \(1 \leq i, j \leq 2^{n/2} \). The overall strategy of equivalent key recovery attack to \(H^2\text{-MAC} \) is shown as follows.

1. Generate a group one \(G_1 \) with \(r = |G_1| = 2^{n/2} \) elements, by computing the corresponding values of \(H(H(c||M'_j)) \) for \(r \) different \(c \) and \(M'_j \)'s, which can be randomly generated. Specifically, \(c \) can be a pre-chosen constant.
2. Generate a group two \(G_2 \) with \(s = |G_2| = 2^{n/2} \) elements, by querying the corresponding values to \(H^2\text{-MAC} \) oracle with the secret key \(K \) for \(s \) different \(M_i \)'s, where \(M_i \)'s are randomly generated.
3. There is a pair \((M_i, M'_j) \) that not only satisfies \(H^2\text{-MAC}_K(M_i) = H^2\text{-MAC}(M'_j) \), but also satisfies \(H(K||\text{pad}||M_i) = H(c||M'_j) \) (an inner collision between \(H^2 \) and \(H^2\text{-MAC} \) happens), with great probability \([1]\).
4. Since \(H(K||\text{pad}||M_i) = H(c||M'_j) \), and we know the value of \(c \) and \(M'_j \), we can compute the value of \(K_e = H(K||\text{pad}||M_i) = H(c||M'_j) \).
5. Let \(\text{pad}_0 \) and \(\text{pad}_1 \) be the padding bits of \(K||\text{pad}||M_i \) and \(K||\text{pad}||M_i||\text{pad}_0||x \), respectively, for arbitrary message \(x \). Hence, we can generate the result of \(H(K||\text{pad}||M_i||\text{pad}_0||x) \) by computing \(y = h(K_e, x||\text{pad}_1) \), then we compute \(H(y) \) further, and we get the very value of \(H^2\text{-MAC}(K||\text{pad}||M_i||\text{pad}_0||x) \), eventually.

Complexity analysis. The elements of group \(G_1 \) computed by \(H^2 \) need \(2^{n/2} \) off-line \(H^2 \) computations. The elements of group \(G_2 \) queried through \(H^2\text{-MAC} \) need \(2^{n/2} \) on-line \(H^2\text{-MAC} \) queries. The probability of that at least one inner collision happens is 0.632 \([1]\). We can store the values of these elements of both groups in hash tables. The above algorithm will require \(O(2^{n/2}) \) time and space to complete.
4 Conclusion

We can recover the equivalent key in about $2^{n/2}$ on-line queries to H^2-MAC and $2^{n/2}$ off-line H^2 computations. Our attack shows that the security of H^2-MAC is totally dependent on the CR of the underlying hash function, which claims that the security of H^2-MAC is totally broken.

Acknowledgement. We thank the anonymous reviewers for their valuable comments. This work was partially supported by the program “Core Electronic Devices, High-end General Purpose Chips and Basic Software Products” in China (No. 2010ZX01037-001-001), and supported by the 973 program of China under contract 2007CB311202, and by National Science Foundation of China through the 61070228 project.

References