A Novel Method for Removing Image Staircase Artifacts

Zhong Chen¹, Zhiwei Hou¹, Yuegang Xing², Xiaobing Chen¹

¹Jiangsu Key Laboratory of Advanced Manufacturing Technology, Huaiyin Institute of Technology, Huaian 223003, China
²Department of Orthodontic Surgery, Huaiyin Hospital of Huaian City, Huaian 23300, China.
zhongchenn19@163.com

Abstract. Due to limited resolution factor, triangle meshes extracted from medical CT images often contain staircase artifacts. In order to remove staircase artifacts during mesh generation and obtain a smooth model from medical images, a novel removing staircase artifacts method is presented. Firstly, we extract contours by using image segmentation and convert a stack of contours into point clouds. Estimating the normals of point clouds and discard outliers by a weighted covariance analysis, and then remove noise by bilateral filtering. Denoising points are fitted by the quadric error function, and then construct triangle meshes by adaptive spherical cover. The resulting triangle meshes are evaluated regarding surface smoothness, volume preservation, geometric accuracy. The experimental results show that the proposed approach can create a smooth, high-quality surface model from medical images.

Keywords: Medical CT; Point clouds; Triangle meshes; Staircase artifacts

1 Introduction

In medical imaging such as CT scans, producing anisotropic data in which the slice resolution in the z direction is commonly lower than the imaging resolution in the x-y plane is possible. In other words, in-plane resolution is only accurate to the pixel, whereas slices can be apart by more than one pixel. A common problem is the appearance of staircase artifacts when triangle meshes from medical images are generated. Usually, medical surface meshes are generated through the marching cubes (MC) algorithm [1] (see Figure 1, in which anisotropic voxel size is 0.352x0.352x0.5 mm). Staircase artifacts affect 3D printing and finite element (FE) simulation. In such applications, smooth, high-quality triangle meshes are essential.
Staircase artifacts can be removed after mesh generation (by mesh smoothing) or during mesh generation (by surface reconstruction). These two methods are described as follows. (1) By mesh smoothing: a variety of mesh smoothing methods have been proposed to improve smoothness. Smoothing methods only allow to reduce staircase artifacts after mesh generation (e.g. Laplacian smoothing [2], Taubin smoothing [3] and Mean Curvature Flow [4]). These methods can remove staircase artifacts, but often cause loss of features and volume shrinkage. Recently, feature-preserving smoothing [5-8] was proposed, these methods can remove the noise while retaining original features. However, staircase artifacts are retained as features when using these feature-preserving smoothing methods. Thus, Moench et al. [9] proposed context-aware mesh smoothing, which can be adaptively smoothed the artifact areas and preserve features in non-artifact areas, but this method was generated many low-quality meshes. Constrained Elastic Surface Nets (CESN) smoothing method [10] reduced staircase artifacts partly but retaining some features, and some obvious staircase may still remain on the surface. (2) By surface reconstruction: Implicit surface reconstruction is an active research field in Digital Geometry Processing (DGP). The following methods can generate surface meshes from point clouds directly. Hoppe et al. [11] proposed an implicit reconstruction approach, which produced surface meshes from point clouds by using a signed distance function. Levin [12] and Alexa et al. [13] approximated point clouds with polynomials by moving least squares (MLS). The Multi-level partition of unity implicit was presented by Ohtake et al. [14]. Bade et al.[15] reconstructed vascular surface models by using the MPU method based on point clouds from binary segmentation masks. Zhao et al. [16] constructed surface models from point clouds by level set method [17].

These methods can generate smooth surface, but the staircase artifacts are not entirely removed. Ohtake et al. [18] proposed an integrating approach to meshing point clouds. This method is based on the Garland-Heckbert [19] local quadric error minimization strategy. High-quality meshes can be created from points directly by means of adaptive spherical cover. However, noise and outliers produce a failed surface reconstruction in Ref. [18].
Fig. 1. (a) Medical CT image slices of the first cervical vertebrae (C1 for short). (b) Surface rendering by the marching cubes algorithm. (C) Mean curvature visualization.

In order to remove staircase artifacts during mesh generation, we have introduced the adaptive spherical cover method into biomedical engineering and modified this method in our work. Our method improves the anti-noise ability and localization accuracy based on the implicit approach.

1.1 Approach Overview

An overview of our presented approach to triangle mesh reconstruction is illustrated in Figure 2. The input data derive from medical CT image slices. The process begins with a stack of contours processed by image segmentation (see Section 2.1). We convert a stack of contours into a set of point clouds in a three-dimensional space (see Section 2.2). We then construct a data structure of the CT point clouds and query the neighbors by means of the kd-tree. The k-nearest neighbors of medical CT point clouds are constructed and the normals are estimated by means of a weighted covariance analysis (see Section 2.3), and then reduce the noise from point clouds through bilateral filtering (see Section 2.4). Point clouds are fitted by using the quadric error function, and then construct triangle meshes by the adaptive spherical cover (see Section 2.5).

Fig. 2. Overview of the presented mesh generation approach. A stack of closed contours by image segmentation. Point clouds extract from a set of contours. Dividing point clouds by kd-tree, estimate the normals and reduce the noise. Constructing triangle meshes by the modified adaptive spherical cover.
2 Surface Reconstruction

2.1 Contours Extraction of CT Images

Medical images used in our study were segmented by an active contour without edges algorithm [20]. The algorithm has certain advantages: (1) it is robust against noise; (2) a closed contour curve by image segmentation under any conditions can be obtained. The main objective of the algorithm is to evolve an interface, which divides the image into two homogeneous regions. This is the solution to minimize the energy functional \( F(c_1, c_2, C) \), defined by:

\[
F(c_1, c_2, C) = \mu \text{Length}(C) + \nu \text{Area}(	ext{inside} C) + \lambda_1 \int_{\text{inside}(C)} |u(x, y) - c_1|^2 dx dy + \\
\lambda_2 \int_{\text{outside}(C)} |u(x, y) - c_2|^2 dx dy
\]

where \( C \) corresponds to the closed curve, \( u(x, y) \) corresponds to the image, \( c_1 \) and \( c_2 \) are the average intensity of \( u(x, y) \) inside and outside of \( C \), respectively. Additionally, \( \mu, \nu \geq 0 \), \( \lambda_1, \lambda_2 > 0 \) are fixed parameters. In this paper, we set the parameters as: \( \lambda_1 = 1, \lambda_2 = 7 \) (bone) and \( \mu = 0.1 \times 255^2, \nu = 0 \), \( \forall \tau = 0.01 \) (\( \forall \tau \) is the time step), 120 iterations.

2.2 Point Clouds Extraction

To construct bone meshes by means of implicit surface reconstruction, obtaining point clouds of bone images is firstly required. We extract bone contours from CT image sequences and set a single pixel of the precise contour in a 2D plane as \( x, y \) coordinates, based on the location in which the profile calculated the \( z \) coordinate. Finally, we obtain 3D point coordinates and the contours translate into point clouds. Point clouds are only available for 3D coordinate information. No topological information exists and the point cloud of every point of differential geometry information (i.e., normal vector, curvature) can only be calculated through the neighbors of a point. Therefore, establishing topological relations in points is necessary and we can easily query the \( k \)-nearest neighbors for each point. At present, three \( k \)-nearest neighbor queries are commonly used: octree, grid, and kd-tree methods [21-22]. The first two methods are classified by a bounding box, and the third approach is to search for the nearest two points. In this study, we adopted the kd-tree method in order to construct the data structure of the CT point clouds and query the neighbors.

2.3 Normal Estimation

Point clouds frequently contain noise derived from scanning and transformation processes. CT point clouds that commonly exhibit artifacts of irregular sampling (e.g.,
noise and outliers) cause difficulties in estimating differential surface attribution. The classical normal estimation is principal component analysis (PCA) [11], which can be unreliable because of outliers and large-scale noise. We describe a novel normal estimation algorithm, which is not affected by unorganized outliers.

CT point clouds \( P = \{ p_i \in R^3 \}_{i=1}^n \) with \( n \) unorganized points, where the \( k \) nearest neighbors of an arbitrary point \( p_i \) is denoted by \( \{ p_j \in P \}_{j=1}^k \), \( k = 10 \), and \( \overline{p} \) is the centroid of the neighbors \( \{ p_j \in P \}_{j=1}^k \). We use a weighted method [23] to estimate the most effective support for a plane and to eliminate the outliers.

We compute a weighted covariance matrix for point \( p_i \) is given by

\[
C = \sum_{j=1}^{k} (p_j - \overline{p}) \cdot (p_j - \overline{p}) \cdot s_j
\]

where \( s_j = \exp(-d_j^2 / \mu^2) \) is the weight for point \( p_j \). If point \( p_j \) is an isolated point, and \( s_j = 1 \). If point \( p_j \) is an inlier point, then \( \mu \) is the mean distance from the point \( p_i \) to all its neighbors \( p_j \), and \( d_j \) is the distance from point \( p_i \) to its neighbor \( p_j \).

Consider the eigenvector problem

\[
C \cdot v = \lambda \cdot v
\]

where \( C \) is a symmetric and positive semidefinite, all eigenvalues \( \lambda \) are real-valued and the eigenvectors \( v \) form an orthogonal frame. The eigenvector that corresponds to the smallest eigenvalue is considered as the normal vector \( n_i \) of the point \( p_i \).

2.4 Noise Removal

Point clouds extracted from CT images often contain undesirable noise, which can be reduced by means of various filtering techniques, such as low-pass filtering and bilateral filtering. Fleishman et al. [6] have proposed a bilateral filtering method, which was modified the bilateral filtering from image denoising to mesh denoising and achieve satisfactory results. The bilateral filtering is also suitable for point clouds denoising. Furthermore, bilateral filtering can not disturb the original shape and structure. We calculate a new position of a point \( p_i \) by means of equations (4) and (5).

\[
d = \frac{\sum_{j=1}^{k} W_{c}(\|p_j - p_i\|) \cdot W_{s}(\|p_j - p_i \cdot n_i\|) \cdot (p_j - p_i \cdot n_i)}{\sum_{j=1}^{k} W_{c}(\|p_j - p_i\|) \cdot W_{s}(\|p_j - p_i \cdot n_i\|)}
\]

\[W_{c}(x) = \exp(-x^2 / 2\sigma_c^2)\]
\[ W_w(x) = \exp(-x^2 / 2\sigma_w^2) \]

where \( d \) is a signed distance, \( W_w(x) = \exp(-x^2 / 2\sigma_w^2) \) is a spatial weighting function, \( W_s(x) = \exp(-x^2 / 2\sigma_s^2) \) is a feature-preserving weighting function, \( \| p_i - p_j \| \) is the distance from a point \( p_i \) to a neighbor \( p_j \), \( \langle p_i - p_j, n_i \rangle \) is a vector product operator of both distance vector \( p_i - p_j \) and vector \( n_i \) of the point \( p_i \), \( \sigma \) is the standard deviation, and \( k \) is nearest neighbors of \( p_i \). We set \( \sigma_w = 3 \) and \( \sigma_s = 2 \).

Thus we obtain the following point update equation:

\[ p'_i = p_i + d_i \]

(5) where \( p'_i \) is a new point after bilateral filtering, and \( d_i \) is a normal vector at a point \( p_i \).

Finally, we get a new point clouds \( P^i = \{ p'_i \in R^3, i \leq n \} \) after bilateral filtering.

4 Conclusion

In this study, we presented a novel method that removes staircase artifacts and creates smooth surface meshes from medical images. This is a multi-stage process. First, we extract a stack of contours by means of image segmentation. The contours translate into point clouds. We then use a weighted covariance analysis to estimate normal at each point. A bilateral filtering is applied to remove noise from point clouds. Triangle meshes are then constructed using an improved adaptive spherical cover algorithm. Experimental results show that the proposed method can efficiently remove staircase artifacts and generate high-quality triangle meshes with reasonable accuracy.

Acknowledgments. This work is supported by the Natural Science Foundation of Jiangsu Higher Education Institutions (No.14KJB460002 and No.15KJA460003), Huaiian Scientific and Technological Key Project (No.HAG2015032), Jiangsu Province Industry-University-Research Cooperation Prospective Study Project (No.BY2016061-14), and Jiangsu Key Laboratory of Advanced Manufacturing Technology (No.HGDML-1204).

References


