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Abstract. Inversions in finite field have been playing a key role in areas of 

cryptography and engineering. The main algorithms for finite field inversions 

are based on Fermat's little theorem, extended Euclidean algorithm and other 

methods. We present techniques to exploit special irreducible polynomials for 

fast inversions in finite fields (2 )nGF , where n is a positive integer. We 

propose fast inversions based on Fermat's theorem for two special irreducible 

polynomials, i.e. trinomials and All-One-Polynomials (AOPs). Trinomials can 

be represented by polynomials 1n mx x   and AOPs can be represented by 

polynomials
1 ... 1n nx x    , where m is a positive integer and 0<m<n. Our 

designs are programmed in Very-High-Speed Integrated Circuit Hardware 

Description Language (VHDL) by using Quartus II and implemented on a low-

cost Field-Programmable Gate Array (FPGA). The experimental results show 

that our designs provide significant reductions in executing time. 

Keywords: Inverter, finite field, Fermat's theorem, irreducible polynomial, 

trinomial, All-One-Polynomial (AOP), Field-Programmable Gate Array 

(FPGA) 

1   Introduction 

Finite field arithmetic has gained increasing importance due to the fact that it is one of 

the most fundamental operations in many areas, e.g. cryptography, signal processing 

and clustered file system. Among finite field arithmetic, multiplications and 

inversions have been received continuous attentions. Therefore, more and more 

designs and implementations of multiplications and inversions in finite fields have 

been proposed. 

Irreducible polynomials are one for the focuses of finite fields due to the fact that 

they are playing an important role in finite field arithmetic: [1] proposes a multiplier 

for a special irreducible polynomial 1nx x   in finite fields (2 )nGF , where n is a 
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positive integer; [2] proposes a multiplier for trinomials in (2 )nGF , where m=1,2,...,n-

1 and / 2m n ; [3] proposes a multiplier for pentanomials in (2 )nGF ; [4] proposes a 

multiplier for All-One-Polynomials (AOPs) and Equally-Spaced-Polynomials (ESPs) 

in (2 )nGF . Multiplications and inversions for special irreducible polynomials are 

efficient. However, there are few inversions for special irreducible polynomials. 

We present techniques to exploit special irreducible polynomials for fast inversions 

in (2 )nGF . The main algorithms for finite field inversions are based on Fermat's little 

theorem [5-14], extended Euclidean algorithm [15-17] and other methods [18-24]. We 

propose fast inversions based on Fermat's theorem for two special irreducible 

polynomials, trinomials and AOPs, where trinomials can be represented by 

polynomials 1nx x   and AOPs can be represented by 

polynomials 1 ... 1n nx x    . 

Our design is well suited for Field Programmable Logic Arrays (FPGAs). We back 

up the claims with implementations of our design on a low-cost Altera FPGA, which 

are programmed in Very-High-Speed Integrated Circuit Hardware Description 

Language (VHDL) by using Quartus II. The experimental results show that our 

designs provide significant reductions in executing time. 

The rest of this paper is organized as follows: Section 2 introduces finite fields and 

inversions. Section 3 proposes fast inversions for special irreducible polynomials in 

finite fields. Section 4 presents implementations of our design on a low-cost Altera 

FPGA. Section 5 presents conclusions of this paper. 

2   Preliminaries 

In mathematics, a finite field is a field that contains a finite number of elements. As 

with any field, it is a set on which the basic operations of addition, multiplication and 

inversion have been defined. 

  The prime field ( )GF p  of order and characteristic p is constructed as the integers 

modulo p, where p is a prime number. Thus, the elements are represented by integers 

in the range 0, ..., p-1. Given a prime power 2nq   with n > 1, the field ( )GF q  can 

be explicitly constructed. One chooses first an irreducible polynomial f in (2)[ ]GF X  

of degree n. Then the quotient ring ( ) (2)[ ] /GF q GF X f  of the polynomial ring 

(2)[ ]GF X  by the ideal generated by f is a field of order q. 

  Suppose that a  is an element in a finite field, the multiplicative inverse for a  

can be calculated a number of different ways. Brute-force search: by multiplying a  

by every number in the finite field until the product is one; Fermat's little theorem: 

since the nonzero elements of (2 )nGF  form a finite group with respect to 

multiplication, 2 1 1
n

a   , thus the inverse of a  is 2 2n

a  ; Extended Euclidean 

Algorithm; LUT [25].  
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3   Fast Inversions for Special Irreducible Polynomials in Finite 

Fields 

3.1   Fast Inversions Based on Fermat's Theorem 

First, let   be an element in (2 )nGF . According to Fermat's theorem [26], we have 

1 2 2.
n

    

Since  
1

1

2 2 2 ,
n

n i

i





   

we have 
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It can be observed that the first step is to compute 2i

 , where p(x) is the irreducible 

polynomial in (2 )nGF . 

For 1,2,..., 1i n  , we compute 
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0
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If p(x) is chosen, for 1,2,..., 1i n  , we can compute 
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Accordingly, for 1,2,..., 1i n  , we can compute 
1

2

0

.
i
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j

ij

j

k x



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The second step of multiplicative inversion is to multiply 1n  elements, 

i.e. 2 , 4 , ...,
12n




. 

Finite field multiplication is performed in two steps. The first step is to perform the 

polynomial multiplication. The second step is to reduce modulo the irreducible 

polynomial. 

Let 
1

0

( )
n

i

i

i

a x a x




  and 
1

0

( )
n

i

i
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b x b x




  be elements in (2 )nGF , and 
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( ) ( ) ( )(mod( ( )))
n
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c x a x b x p x c x
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be the expected multiplication result. 

First, we compute ijv  for 0,1,...,2( 1)i n   and 0,1,..., 1j n   according to 

1

0

mod ( ) .
n

i j

ij

j

x p x v x




  
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Next, we compute 
iS  by AND logic gates for 0,1,...,2( 1)i n   by 

.i j k

j k i

S a b
 

   

After that, we compute
ic by XOR logic gates for 0,1,..., 1i n   by 

2( 1)

0

.
n

i ji j

j

c v S




   

Finally, the multiplication result is
1

0

( )
n

i

i

i

c x c x




 . 

In sum, it can be observed from the above computations that efficient irreducible 

polynomials can provide significant reductions in executing time of inversions. 

3.2   Fast Inversions for Trinomials 1nx x   

We present techniques to exploit special irreducible polynomials - trinomials 

1nx x   for fast inversions in (2 )nGF . Irreducible polynomials with the form of 

1nx x   in finite fields are summarized in Table 1, where some trinomials 

1nx x   cannot be chosen as irreducible polynomials, e.g. 5 1x x  , 8 1x x  . 

Table 1.  Irreducible Polynomials with the Form of 1nx x   in Finite Fields.  

Finite fields Irreducible polynomials 

1nx x   

2(2 )GF  
2 1x x   

3(2 )GF  
3 1x x   

4(2 )GF  
4 1x x   

6(2 )GF  
6 1x x   

7(2 )GF  
7 1x x   

9(2 )GF  
9 1x x   

 

Since 1nx x   is chosen as the irreducible polynomial in (2 )nGF , 

for 1,2,..., 1i n  , 2i jx  can be computed as follows. 
1

2

0

( 1) .
i

n
j n j

j

j

x mod x x v x






    

For 0,1,..., 1i n  , we compute ix  as follows. 

mod ( ) .i ix p x x  

For i n , we compute ix as follows. 

mod ( ) 1.nx p x x   
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For 2 1n i n   , we compute ix  as follows. 
1mod ( ) .i i n i nx p x x x     

It can be observed from that the inversions are efficient when the irreducible 

polynomials are 1nx x   in (2 )nGF . 

3.3   Fast Inversions for AOPs 

We present techniques to exploit special irreducible polynomials - AOPs 
1 2... 1n nx x x x     for fast inversions in (2 )nGF . Irreducible polynomials with 

the form of 1 2... 1n nx x x x     in finite fields are summarized in Table 2， 

where some AOPs 1nx x   cannot be chosen as irreducible polynomials, 

e.g. 3 2 1x x x   , 5 4 ... 1x x   , 7 6 ... 1x x   , 8 7 ... 1x x   , 
9 8 ... 1x x   , 11 10 ... 1x x   . 

Table 2.  Irreducible Polynomials with the Form of 
1 ... 1n nx x     in Finite Fields.  

Finite fields Irreducible polynomials 
1 ... 1n nx x     

2(2 )GF  
2 1x x   

4(2 )GF  
4 3 ... 1x x    

6(2 )GF  
6 5 ... 1x x    

10(2 )GF  
10 9 ... 1x x           

12(2 )GF  
12 11 ... 1x x           

 

Since 1 ... 1n nx x     is chosen as the irreducible polynomial in (2 )nGF , 

for 1,2,..., 1i n  , 2i jx  can be computed as follows. 
1

2 1

0

( ... 1) .
i

n
j n n j

j

j

x mod x x v x


 



     

For 0,1,..., 1i n  , we compute ix as follows. 

mod ( ) .i ix p x x  

For i n , we compute ix  as follows. 
1 2mod ( ) ... 1.n n nx p x x x      

For 2 1n i n   , we compute ix  as follows. 
1mod ( ) .i i nx p x x    

It can be observed from that the inversions are efficient when the irreducible 

polynomials are 1 ... 1n nx x     in (2 )nGF . 
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4   Implementation 

In order to prove that our designs have low latency for inversions in (2 )nGF , the 

designs are modeled in VHDL by using Quartus II and implemented on 

EP2S130F1020I4 FPGA device, which is a member of ALTERA Stratix family. 

Table 3 gives insight in the performance of the implementations of our designs. The 

experimental results show that our designs provide significant reductions in executing 

time. 

Table 3.  Implementations of Inversions in Finite Fields for Special Irreducible Polynomials 

Finite 

Fields 
1nx x   

Time (ns) 

AOPs 

Time (ns) 

Normal 

Time (ns) 

2(2 )GF  

 
3(2 )GF  

2 1x x   

8.39 
3 1x x   

8.64 

2 1x x   

8.39 

-   

- 

2 1x x   

8.39 
3 2 1x x       

8.65     
4(2 )GF  

4 1x x   

8.61 

4 3... 1x x   

8.61 

4 1x x   

8.61 
6(2 )GF  

 
7(2 )GF  

9(2 )GF  

6 1x x   

8.87 
7 1x x     

18.80 
9 1x x     

22.81 

6 5 ... 1x x    

8.87 

- 

- 

- 

- 

6 4 2 1x x x x     

8.88 
7 6 2... 1x x x     

22.60  
9 8 6 ... 1x x x     

25.06            
10(2 )GF  -       

- 

10 9 ... 1x x    

    25.40   

10 3 2 ... 1x x x     

27.61   
12(2 )GF  -   

-        

12 11 ... 1x x      

29.57 

12 3 2 ... 1x x x          

31.19       

5   Conclusion 

Inversions in finite field have been playing a key role in many areas, e.g. 

cryptography, signal processing and clustered file system. We present techniques to 

exploit special irreducible polynomials for fast inversions in finite fields (2 )nGF , 

where n is a positive integer. We propose fast inversions based on Fermat's theorem 

for two special irreducible polynomials, i.e. trinomials and AOPs. Trinomials can be 

represented by polynomials 1n mx x   and AOPs can be represented by 

polynomials 1 ... 1n nx x    , where m is a positive integer and 0<m<n. Our designs 

are programmed in VHDL by using Quartus II and implemented on a low-cost 

ALTERA Stratix FPGA. The experimental results show that our designs provide 

significant reductions in executing time. 
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