Why Switch to a Volatile Social Network Services?

Haengnam Sung¹, Byung-Hyuk Ahn², Yeonsu Jeong², Dae-Yul Jeong²

¹ College of Business, Gyeongsang National University
501, Jinju-Daero, Jinju, 52828, South Korea
{haena, bahn, arisesang}@gnu.ac.kr

² Department of Management Information System, Gyeongsang National University
501, Jinju-Daero, Jinju, 52828, South Korea
*Corresponding Author: dyjeong@gnu.ac.kr

Abstract. This paper uses the push-pull-mooring model of the migration theory in finding the factors which affect SNS users' switching intention to volatile social networking services. The results show that users tend to switch to volatile SNS when the service provides more privacy concern, volatility, and better system security.

Keywords: Volatile SNS, Switching Intention, SNS Overload, SNS Exhaustion, Privacy Concern, Volatility, System Security

1 Introduction

The 'right to be forgotten' is the rights of internet users to ask their personal data or their past records to be deleted after some period of time [1]. A report says 43% of cell phone users in U.S. use mobile instant messaging or volatile instant messaging applications [2]. Users' demand for volatile messaging service lead to third generation of SNS which is characterized as volatile, closed, and anonymous.

2 Literature Review

There is no generally accepted definition of volatile SNS. We need to understand volatile IM (instant messaging). PC Magazine Encyclopedia (2016) defines IM as Exchanging text messages in real time between two or more people logged into a particular instant messaging service [3]. Volatile IM is an instant messaging service which does not store messages on either the server or the client computer.

Migration theory does not provide a theoretical framework only for a migrant to move between geographic places or between cultures, but it also provides a useful framework for consumers to switch online and offline services [4]. Push effect refers to factors that cause people leave their original residence. Pull effect refers to factors that attract people to a destination. Mooring effect refers to individual lifestyle and cultural issues which facilitate or inhibit the migration [5].
Thus, we propose the following hypotheses to examine the relationship among the constructs based on previous studies.

H1: SNS overload is positively related to users' intention to switch to volatile SNS.
H2: SNS exhaustion is positively related to users' intention to switch to volatile SNS.
H3: Privacy concern is positively related to users' intention to switch to volatile SNS.
H4: Volatility is positively related to users' intention to switch to volatile SNS.
H5: System security is positively related to users' intention to switch to volatile SNS.

3 The Research

The research is designed to confirm the relationships among SNS overload, SNS exhaustion, privacy concern, volatility, system security, and switching intention on volatile SNS.

This study has six variables, which each has multiple items that are measured by a five-point Likert-type scale (1 = strongly disagree and 5 = strongly agree). The items used to operationalize the constructs were mainly adapted from previous studies and modified in the context of the research.

4 Findings

Among 211 university students, 55.9 percent were male and 44.1 percent were female. 46.0 percent were 3~4 years SNS usage time and 20.9 percent were 5~6 years SNS usage time. 34.6 percent were more than 11 times and 23.2 percent were 6~8 times (per day).

Table 1. Confirmatory factor analysis

<table>
<thead>
<tr>
<th>Variables</th>
<th>Items</th>
<th>Estimate</th>
<th>Std. Estimate</th>
<th>Std. Error</th>
<th>t-value</th>
<th>Composite reliability</th>
<th>AVE</th>
<th>Cronbach's α</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNS Overload</td>
<td>1*</td>
<td>1</td>
<td>0.886</td>
<td></td>
<td></td>
<td>.891</td>
<td>.741</td>
<td>.889</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.979</td>
<td>0.872</td>
<td>0.057</td>
<td>17.119</td>
<td>.891</td>
<td>.741</td>
<td>.889</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.931</td>
<td>0.802</td>
<td>0.06</td>
<td>15.633</td>
<td>.891</td>
<td>.741</td>
<td>.889</td>
</tr>
<tr>
<td></td>
<td>1*</td>
<td>1</td>
<td>0.866</td>
<td></td>
<td></td>
<td>.891</td>
<td>.741</td>
<td>.889</td>
</tr>
<tr>
<td>SNS Exhaustion</td>
<td>2</td>
<td>0.941</td>
<td>0.911</td>
<td>0.046</td>
<td>20.592</td>
<td>.937</td>
<td>.788</td>
<td>.928</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.869</td>
<td>0.87</td>
<td>0.046</td>
<td>18.947</td>
<td>.937</td>
<td>.788</td>
<td>.928</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.884</td>
<td>0.859</td>
<td>0.048</td>
<td>18.538</td>
<td>.937</td>
<td>.788</td>
<td>.928</td>
</tr>
<tr>
<td></td>
<td>1*</td>
<td>1</td>
<td>0.918</td>
<td></td>
<td></td>
<td>.912</td>
<td>.796</td>
<td>.924</td>
</tr>
<tr>
<td>Privacy Concern</td>
<td>2</td>
<td>0.984</td>
<td>0.916</td>
<td>0.042</td>
<td>23.4</td>
<td>.912</td>
<td>.796</td>
<td>.924</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.930</td>
<td>0.854</td>
<td>0.046</td>
<td>20.223</td>
<td>.912</td>
<td>.796</td>
<td>.924</td>
</tr>
<tr>
<td></td>
<td>1*</td>
<td>1</td>
<td>0.929</td>
<td></td>
<td></td>
<td>.912</td>
<td>.796</td>
<td>.924</td>
</tr>
<tr>
<td>Volatility</td>
<td>2</td>
<td>0.89</td>
<td>0.858</td>
<td>0.046</td>
<td>19.452</td>
<td>.894</td>
<td>.733</td>
<td>.889</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.86</td>
<td>0.81</td>
<td>0.049</td>
<td>17.564</td>
<td>.894</td>
<td>.733</td>
<td>.889</td>
</tr>
<tr>
<td>System</td>
<td>1*</td>
<td>1</td>
<td>0.893</td>
<td></td>
<td></td>
<td>.897</td>
<td>.731</td>
<td>.912</td>
</tr>
</tbody>
</table>
Hypothesis: Path | Estimates | t-value | p-value | Results
---|---|---|---|---
H1: SNS overload → Switching intention | 0.038 | 0.691 | 0.489 | not supported
H2: SNS exhaustion → Switching intention | 0.056 | 0.997 | 0.319 | not supported
H3: Privacy Concern → Switching intention | 0.368 | 6.033 | *** | supported
H4: Volatility → Switching intention | 0.435 | 7.461 | *** | supported
H5: System security → Switching intention | 0.156 | 2.967 | 0.003 | supported

Model Fit Indices: χ²(155)=298.048, χ²/df=1.923, p=.000, GFI=.902, AGFI=.868, NFI=.938, CFI=.969, TLI=.962, RMR=.036, RMSEA=.059
*Reference variables, AVE: Average Variance Extracted

5 Conclusion

This research tries to find out whether SNS user will switch their SNs sites if another SNS provides volatility in their service. The finding is that users of SNS, whether they are open type or closed type, they may switch to another SNS if; First, they are more concerned about their private. Second, the new SNS provides volatility. If the new SNS guarantees the volatility, the switching intention will be higher.

Another finding is that users ten to stick to their current SNS even though they feel overloaded or exhausted. This can be explained as follows; first, user are not yet exhausted by using SNS (Mean is 19.4). It means they still enjoy their current SNS. Second, they fell that a new SNS will be almost the same as the current on unless the new SNS provides a different service like volatility.

References

2. TrendSpectrum: USA 43% of smartphone users have a mobile messaging app to use IM or volatile, http://trendspectrum.co.kr/?p=32682 (2015)