Entropy Map Generation for Image Enhancement

Seongsoo Lee and Gwanggil Jeon

1Department of Embedded Systems Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 406-772, Korea
gjeon@inu.ac.kr

Abstract. In this paper, a compromised deinterlacing method is proposed for the interlaced signals. We used two well-known methods: Bob method and efficient edge directed line average method. We used information entropy to assign weights. Simulation results show that the presented method provides satisfactory results.

Keywords: Color image, information entropy, down-sampling, edge map.

1 Introduction

In this paper, a compromised deinterlacing method is presented for interlaced signals. We used two well-known methods: Bob method and efficient edge directed line average method. Bob method is one of the simplest methods, which restore a missing line between two neighbor pixels existing in the interlaced images before displaying an image. In addition, we used efficient edge directed line average method.

2 Proposed method

Figure 1 shows the flowchart of the proposed method.

Fig. 1. Flowchart of efficient edge directed line average method. P and Q are dominant edge direction selector.
Figure 2 shows the block diagram of the proposed method.

![Block diagram of the proposed method](image)

Fig. 2. Block diagram of the proposed method.

3 Experimental Results

We used 500-by-500 size 18 McM images for the comparison. To assess objective performance, #11 McM image was used. Figure 3(a) is original image, Fig. 3(b) is entropy image, Figs. 3(c) and 3(d) are M_1 and M_2 results. The proposed method is shown in Fig. 3(e). Difference images between original and M_1 and M_2 are shown in Figs. 3(f) and 3(g).

4 Conclusion

This paper studies deinterlacing method. The interlaced signals are vertically restored by interpolation method. Efficient edge directed line average method and Bob were applied in this system. We used information entropy to assign weight strategy. Experimental results show that the presented method provides satisfactory results.
Fig. 3. McM image #11: (a) Original image, (b) entropy map, (c) M_1 result, (d) M_2 result, (e) proposed method, (f) difference between original and M_1, (g) difference between original and M_2, and (h) difference between original and proposed method.

Acknowledgment. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and Future Planning(2013R1A1A1010797)

References