
Design of the Secure Compiler for the IoT Services

Yunsik Son*, Junho Jeong*, YangSun Lee**

*Dept. of Computer Engineering, Dongguk University
26 3-Ga Phil-Dong, Jung-Gu, Seoul 100-715, KOREA

sonbug@dongguk.edu, yanyenli@dongguk.edu
**Dept. of Computer Engineering, Seokyeong University

16-1 Jungneung-Dong, Sungbuk-Ku, Seoul 136-704, KOREA
Corresponding Author: yslee@skuniv.ac.kr

Abstract. Recently, the computing environments are developing to the IoT
services which exchange a lot of information using various and heterogeneous
devices that always connected on networks. Since the data communication and
services take places on the various devices including not only traditional
computing environments and mobile devices such as smartphone but also
household appliances, embedded devices, and sensor nodes, the security
requirements is getting more important at this point in time. In this paper, the
compiler with secure software concept was proposed to develop the secure
applications for IoT services.

Keywords: Secure Software, S/W Weakness, Compiler Construction, Program
Analysis, IoT Services

1 Introduction

Recently, the computing environments are changing to the IoT, but the IoT services
have high security problems such as hacking and exploiting because almost devices of
IoT systems connected on the internet and transmit data over the network. IoT sensors
or devices are exposed to relatively high security threat than the traditional server
system inside firewall or IDS, if such terminal devices are under attack from the
outside, the whole IoT based services can't operate normally or work with abnormal
behaviors.

In this paper, we propose the secure compiler to develop the secure IoT
applications on the computing environments with various IoT devices. For the
proposed compiler, we apply the secure software concept to the compiler construction
phase and add the 2 modules that designed for secure software on our compiler model
of smart cross platform.

Advanced Science and Technology Letters
Vol.110 (ISI 2015), pp.67-70

http://dx.doi.org/10.14257/astl.2015.110.14

ISSN: 2287-1233 ASTL
Copyright © 2015 SERSC

2 Secure Software

The software of today exchanges data in the internet environment making it difficult
to secure validity of the data input and output. There exists the possibility of being
maliciously attacked by unknown and random invaders. This weakness has been the
direct cause of software security incidents which generate significant economic losses
or social problems [1].

Security systems installed to prevent security incidents from occurring, mostly
consist of firewalls, user authentication system and etc. However, according Gartner’s
report 75% of software security incidents occur due to application programs including
weaknesses. Therefore rather than making security systems for the external
environment more firm, programmers creating software codes more firm is the more
fundamental and effective method of increasing the security levels. However, efforts
to reduce the weaknesses of a computer system are still mainly biased to network
servers [1, 2].

Recently, there has been recognition of this problem and therefore research on
secure coding, writing secure codes from the development stage, is being carried out
actively. Especially, CWE(Common Weakness Enumeration), an organization which
analyzes the weaknesses that can arise from programming language, has analyzed and
specified the various weaknesses that can occur in the source code creation stage by
the different languages [3]. Also, CERT(Computer Emergency Response Team)
defines secure coding rules to ensure secure source code creation [2].

3 Secure Compiler for IoT Services

In order to design the secure compiler, a secure coding rule checker and a static
weakness analyzer are added on the compiler model for smart cross platform [4]. In
this study, the secure compiler was designed by 8 parts as can be seen in Fig. 1.

Fig. 1. Proposed Secure Compiler Model for C/C++ Languages

Advanced Science and Technology Letters
Vol.110 (ISI 2015)

68 Copyright © 2015 SERSC

The secure compiler provides secure features to prevent the software weaknesses
of the input program source code in C/C++. It was designed with six general compiler
parts - Scanner (lexical analysis), Parser (syntax analysis), SDT (Syntax Directed
Translation), Semantic analyzer, ICG (Intermediate Code Generator), and Optimizer –
and 2 kinds of the secure part; Secure coding rule checker, Static weakness analyzer.
The detailed information for each part is as follows.

Scanner, Parser, and SDT modules are easily can be group as a processor to
analyze the input C/C++ programs and generate analyzed AST (Abstract Syntax Tree)
for the input programs.

Semantic analyzer checks the process of collecting symbol information on the AST
level, to verify cases which are grammatically correct but semantically incorrect. And
it uses the AST and symbol table to carry out semantic analysis of statements and
creates a semantic tree as a result. A semantic tree is a data structure which has
semantic information added to it from an AST. It is used for not only generating the
VM (Virtual Machine) code but also analyzing software weaknesses.

The code generation module receives the semantic tree as an input after all analysis
is complete and it generates a VM code which is semantically equal to the input
program in C/C++.

Secure coding rule checker is the module to find the rule violations of the input
programs. The coding rules defined by meta-language that was designed for describe
the secure policy of the target programming languages. The defined rules are
interpreted by rule checker, and the checker analyze the violations using the input
semantic tree with interpreted rule information.

Static weakness analysis module analyzes the control flow and data flow of a
source program by using the symbol information and semantic tree generated by the
front end of the compiler. Some weaknesses are too difficult to figure it out precisely
by rule checker. In that case, the rule checker generates too many false alarms for
target weaknesses [5]. For the case of these weaknesses, we are using the static
weakness analysis module that has 1:1 mapping routines for specific weakness
analysis.

The software weaknesses that analyzed by proposed compiler are collected and
categorized from the CWE and OWASP’s defined top level weaknesses about
embedded system, network, IoT, and C/C++ programming languages.

4 Conclusions and Further Researches

In this paper, we have designed a new compiler to support secure software for IoT
services. We defined 8 modules to construct the proposed compiler and to generate a
VM code for use on the IoT VM which is independent of platforms with secure
software features. We hope to the compiler will be implemented that is enhance the
secure features of the IoT services. Also, we expect that expand the coverage of
previous IoT service developmental platforms and reduce the cost of developing
secure services by the proposed compiler. The compiler for weakness analysis
proposed in this study examines the weaknesses that can exist within programs at the

Advanced Science and Technology Letters
Vol.110 (ISI 2015)

Copyright © 2015 SERSC 69

beginning of application development. It also enables safe applications development
and a differentiated function from existing developing/testing tools.

In the future, there is need for implementation phase of a secure compiler to
analyze the software weaknesses on IoT applications. Further research on VM
optimization for IoT services is also needed.

Acknowledgments. This research was supported by Basic Science Research
Program through the National Research Foundation of Korea(NRF) funded by the
Ministry of Science, ICT and Future Planning (No.2013R1A2A2A01067205).

References

1. J. Viega, G. MaGraw, Software Security, How to Avoid Security Problems the Right Way,
Addison-Wesley, USA (2006)

2. J. McManus and D. Mohindra, The CERT Sun Microsystems Secure Coding Standard for
Java, CERT, USA (2009)

3. Common Weakness Enumeration (CWE): A community-Developed Dictionary of Software
Weakness Types, http://cwe.mitre.org/.

4. Y.S. Lee, Y.S. Son, “A Study on the Smart Virtual Machine for Executing Virtual Machine
Codes on Smart Platforms”, International Journal of Smart Home, SERSC, vol. 6, no. 4,
pp. 93--105 Australia (2012)

5. Y.S. Son, S.M. Oh, “Design and Implementation of a Compiler with Secure Coding Rules
for Secure Mobile Applications”, International Journal of Security and Its Applications,
SERSC, vol.6, no.4, pp. 201--206 Australia (2012)

Advanced Science and Technology Letters
Vol.110 (ISI 2015)

70 Copyright © 2015 SERSC

