International Conference on Computer and Applications (CCA 2012), Proceedings

Abstract: Displaced Butterfly Subdivision Surface Reconstruction from Point Clouds Using MLS Approximation

Jung Lee¹ and Sun-Jeong Kim² ¹ Dept. of Information and Communication, Korea University airjung@gmail.com ² Dept. of Ubiquitous Computing, Hallym University sunkim@hallym.ac.kr

Abstract

This paper proposes a new procedure for generating a displaced butterfly subdivision surface for approximating arbitrary point cloud data taken from surfaces of any topology. The subdivision surface is able not only to represent a natural level of detail structure of the surface, but it is also to be memory-efficient by taking advantage of smoothness properties. We use a variant displaced subdivision scheme, where scalar displacements, in the direction of a local normal, are computed via the MLS (moving-least-squares) approach. The scalar displacement values represent the details of a subdivision surface. The resulting surface is a mesh with subdivision connectivity providing a high quality and efficient approximation of the given point clouds. At last, we present several examples demonstrating the performance of our algorithm.

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2011-0015072)